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Abstract: This paper introduces the robust inventory routing problem with 
finite time horizon in three-level distribution systems considering uncertain 
demand and transportation cost. The vendor is responsible for replenishing 
distribution centres and distribution centres replenish geographically scattered 
customers. The products are distributed by capacitated vehicles and, depending 
on the decision variables, multiple vehicles are assigned to each distribution 
centre. The inventories are kept both in distribution centres and customer sites. 
The objective is was to find a combined transportation and inventory strategy 
and minimise system cost while meeting the demand of each customer without 
shortage and ensuring feasibility regardless of the realised demands and 
transportation cost. The proposed system is integrated by a mixed integer linear 
programming (MILP) formulation for deterministic case of the problem. 
Moreover, the corresponding robust counterpart is formulated with regard to 
three different techniques of box, polyhedral and interval-polyhedral and 
analysed using adjustable uncertainty parameters on a test bed. Finally, to cope 
with intractability of large size problems, an imperialist competitive algorithm 
is developed by genetic algorithm operators. 
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1 Introduction 

Coordination plays an important role in successful performance of all parts of supply 
chain. Since all parts of a supply chain are tightly connected, their coordination results in 
minimising system cost and also better response performance for customers’ 
requirements. Specifically, in distribution logistics, by considering integrity, producers 
and purchasers are not allowed to independently make decisions. Distribution problem as 
transportation problem and inventory management have been investigated by many 
researchers as inventory routing problem (IRP). The main body of IRP can be defined as 
solving three questions of how much to deliver, when to deliver and in what order to 
deliver. Features of IRPs can be categorised in terms of time horizon, topology, demand, 
routing, inventory policy, inventory decision, fleet composition and fleet size (Coelho  
et al., 2012) In real world situations, IRPs arise in various industries such as maritime 
logistics (Song and Furman, 2010), blood distribution (Hemmelmayr et al., 2009), gas 
companies (Uggen et al., 2011), supermarket chains (Gaur and Fisher, 2004), vending 
machine chain (Huang and Lin, 2010), automobile industries (Alegre et al., 2007; 
Blumenfeld et al., 1987; Ohlmann et al., 2008), meat industry (Oppen et al., 2010), frozen 
food distribution companies (Custódio and Oliveira, 2006). 
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Although there are many attributes adapted to the IRP, IRPs are intended to be 
classified in two schemes. The first one is structural variants, presented by Andersson  
et al. (2010), in which the number of distributors and customers may vary depending on 
the nature and essence of the arisen problem. For instance, in maritime logistics, only a 
central depot does not exist. The ships might load and unload goods in different harbours. 
The second one is the interested demand characteristics. Due to the nature of the arisen 
problem, it can be known a priori (deterministic) or uncertain. As for the uncertainty, it 
can be described random variables, membership functions, or even unknown, if no 
probability and membership function is used for it. 

Topology of the IRP might be one-to-one, one-to-many or many-to-many (Baita  
et al., 1998). Most previous researches have been on typical versions of IRP with simple 
topology (one-to-many), single vehicle, single period, single product and operating policy 
aimed to minimise the combined inventory-routing cost. And also, most researches in the 
IRP literature have focused on two-echelon distribution systems while distribution 
centres are tightly connected with the plant. The literature on three-level distribution 
chains is a little rare. Shen and Qi (2007) conducted a research on a three-level IRP 
problem with stochastic demands to minimise cost including location cost, inventory cost 
and distribution cost. Their model determined assigning customers to distribution centres 
and also the number of location of distribution centres. Zhao et al. (2008) considered a 
three-level distribution system, in which a single train with a large capacity replenished 
inventory of the warehouse. Their proposed strategy was the integration of two methods: 
power of two (POT) for inventory management and fixed partitioning policy (FPP) for 
transportation. Shen and Honda (2009) focused on a three echelon supply chain including 
a single plant, multiple distribution centres and multiple retailers and formulated a mixed 
integer programming (MIP) model to develop an integrated replenishment and routing 
plan while considering lateral transfers between distribution centres in order to lower 
transportation cost. Their system was assumed to be operated in JIT replenishment way; 
therefore, the inventory cost was not incurred to the model. Their heuristic solution 
approach divided the problem to three sub-problems: in the first one, retailers were 
assigned to distribution centres and routes were determined for each distribution centre. 
The remaining two sub-problems corresponded to the transfer between distribution 
centres and modelling network flow for determining inventory replenishment to minimise 
costs. Van Anholt et al. (2016) proposed a multi period inventory-routing problem with 
pickups and deliveries motivated by the replenishment of automated teller machines 
(ATM) in the Netherlands. Qazvini et al. (2016) presented a mixed integer linear model 
for a green routing problem. They considered environmental issues in a multi depot 
distribution system. 

Many studies have been carried out on uncertainties in IRP literature. Jaillet et al. 
(2002) investigated IRP with stochastic demands and infinite planning horizon for a  
one-to-many network. Ramalhinho Dias Lourenço and Ribeiro (2003) considered a 
combination of stochastic and deterministic demands for customers simultaneously, i.e., 
there were two groups of customers: one group had deterministic demand and another 
had uncertain demands. Some other papers in the IRP literature have focused on 
stochastic parameters (see, e.g., Adelman, 2004; Yu et al., 2012; Kleywegt et al., 2002; 
Rahimi et al., 2017). In order to apply any stochastic model to real world problems, a 
preliminary analysis of uncertainty based on four points is required, which has not yet 
been performed (Baita et al., 1998): 
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• a suitably large database of related data 

• appropriate assumptions about future behaviour of uncertain parameters 

• appropriate assumptions about forms of stochastic processes 

• estimation using statistical methods of the parameters of those stochastic processes. 

From the practical point of view, such analysis cannot be expected to be easily 
implemented in every case. So, it seems to be more logical and applicable to consider the 
unknown parameters as bounds, which leads to reach a more sensible and controllable 
model. 

Robust optimisation is a more recent and novel method for confronting uncertainty, in 
which the model is set based on an extreme case. There is no available information of 
parameter distribution and membership function; so, uncertain model is neither stochastic 
nor fuzzy. As mentioned above, in real life situations, there is not much information 
about uncertain parameters. Robust optimisation provides a feasible solution (called 
mini-max solution) under all possible realisation uncertain parameters within their 
bounds. It means that this approach tries to find solutions which are less sensitive to the 
changing uncertain parameters (Wang and He, 2009; Gholami-Zanjani et al., 2017). 

To the best knowledge of the present authors, the researches done by Aghezzaf 
(2007) and Solyali et al. (2012) are the only papers which have considered robust 
optimisation in IRPs. Solyali et al. (2012) assumed an ambiguous probability distribution 
demand while Aghezzaf (2007) considered normal distribution for both demands and 
travel times with a constant average and bounded standard deviation called stationary. He 
developed a nonlinear MIP model for a cyclic distribution strategy. Their proposed model 
aimed to find minimum cost for transportation and replenishment strategies and the 
introduced solution approach was a combination of robust plans and Mont-Carlo 
simulation. Solyali et al. (2012) introduced a one-to-many topology IRP facing 
uncertainty in demands over a finite time horizon. They proposed two robust MIP models 
for the problem which were solved by a branch and cut algorithm. For the first time, 
polyhedral robust approach was implemented within their model. 

Since IRP is a NP-hard problem, the model can be only used for exact solutions of 
small and relatively medium sized problems. Consequently, the intention is to solve the 
problem via a heuristic method. In the literature, many researchers have implemented 
heuristic methods for IRPs (see, e.g., Federgruen and Zipkin, 1984; Golden et al., 1984; 
Anily and Federgruen, 1990). Gaur and Fisher (2004) used a randomised sequential 
matching algorithm (RSMA) to solve IRP and adapted an insertion method for initial 
solutions, which was improved by a cross-over method. Campbell and Savelsbergh 
(2004) obtained initial solutions with an integer programming model and improved it by 
an insertion method. Zhao et al. (2007) used an insertion method, called Geni, in their 
research for routing problem and also adapted Tabu search for POT to deal with the 
inventory problem. Archetti et al. (2017) proposed a Tabu search combined with 
mathematical formulations to deal with an IRP consisting of a supplier and a set of 
customers over a discrete time horizon. 

This paper is organised as follows: Section 2 describes the problem in detail and the 
proposed mathematical model. Section 3 presents robust optimisation approach applied to 
the mathematical model. Section 4 is dedicated to numerical experiments resulted from 
robust models of the problem. In Section 5, the improved imperialist competitive 
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algorithm is implemented and its controllable parameters are tuned via Taguchi method 
in Section 6. Section 7 presents some concluding remarks of the paper. 

In this paper, a three-level distribution network is introduced, in the first level of 
which, there is a plant with unlimited capacity of production. The second level consists of 
a set of distribution centres and, at the third level, there is a set of geographically 
dispersed customers/retailers served by distribution centres using small vehicles. Since 
the time horizon is defined as finite and periodic, uncertainty in demands and travelling 
cost are encountered. In this case, no information is available on uncertainties, except 
bounds. Corresponding to the most practical distribution management problems, using 
multiple big vehicles for each distribution centre is allowed, which adds more complexity 
to the problem. The objective of this problem is to minimise the inventory and routing 
cost. The replenishment and routing plan is subject to the following constraints: 

• the vehicles’ capacity cannot be exceeded 

• the distribution centres’ and customers’ capacity cannot be exceeded 

• inventory level in the distribution centres and customers’ site is not allowed to be 
negative 

• each route starts and ends in distribution centres 

• each customer is assigned to just one distribution centre in each time period 

• each vehicle is to perform one route per time period from the correspondingly 
assigned distribution centre 

• the number of required vehicles in distribution centres is a decision variable. 

2 The proposed mathematical model 

Schematic representation of the proposed problem is shown in Figure 1. This graph can 
be applied to so many real world problems such as food retailing systems, replenishment 
of automatic teller machines, waste collection systems (Nolz et al., 2014). The problem is 
defined on a graph G = (V, A), where V = {0, …, n} is the vertex set and A = {(i, j): i, j ∈ 
V, i ≠ j} is the arc set. Vertex 0 introduces the plant; vertexes 1, …, d are distribution 
centres and (d + 1), …, n represent customers. The notations are as follows: 

Indices 

O plant’s index 

D set of depots d = 1, …, D 

C set of depots and customers i = 1, …, D, D + 1, …, C 

K set of vehicles k = 1, …, K. 

Parameters 

Qo capacity of vehicles belonging to the plant 

Qk capacity of vehicles belonging to distribution centres 

Qd capacity of distribution centres 



   

 

   

   
 

   

   

 

   

    An integrated approach for robust inventory routing problem 419    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Qc capacity of customers 

Fo fixed cost of plant’s vehicles 

Fk fixed cost of distribution centres’ vehicles 

dit demand of customer i in period t 

Ci capacity of customer i 

cij routing cost associated with going from customer i to customer j 

od routing cost associated with going from plant to distribution centre d 

hd inventory holding cost rate in each distribution centre 

hi inventory holding cost rate for each customer. 

Variables 

zidt is equal to 1 if and only if customer i is served by distribution centre d in period t 

xijkt is equal to 1 if and only if vertex j immediately follows vertex i on the route of 
vehicle k in period t 

yikt is equal to 1 if and only if vertex i is visited by vehicle k in period t 

udt is equal to 1 if distribution centre d receives products from plant in period t 

bkd is equal to 1 if vehicle k is allocated to distribution centre d 

wit sum of the deliveries made by vehicles, in period t after visiting customer i 

qikt quantity of product delivered to customer i using vehicle k in time period t 

gdt quantity of product delivered from plant to distribution centre d in time period t 

Idt inventory level of distribution centre d at the beginning of period t 

Iit inventory level of customer i at the beginning of period t 

d dt i it o dt k ijkt
t d i t k d i d j

ij ijkt dt d
i j k t t d

Min Z h I h I F u F x

c x u o

≤

   = + + +      

+ +

     

 
 

1 ,idt
d

z t i= ∀  (1) 

( )1 ,
3ijkt idt jdt kdx z z b i j t d≤ + + ∀ ≠ ∀  (2) 

, ,ijkt jikt ikt
j i j i

x x y i k t
≠ ≠

= = ∀   (3) 

, &jt k it k ijkt
k

w Q w Q x i t j d+ ≥ + ∀ ∀ >  (4) 
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, ,ikt it kq w Q i k t≤ ≤ ∀  (5) 

,dt dt og u Q d t≤ ∀  (6) 

, 1 ,dt dt ikt kd d t
i k

g I q b I d t++ = + ∀  (7) 

, 1 &ikt it it i t
k

q I d I t i d++ = + ∀ ∀ >  (8) 

0 ,dtI d t≥ ∀  (9) 

0 ,itI i t≥ ∀  (10) 

,dt dt dg I Q d t+ ≤ ∀  (11) 

,ikt it i
k

q I C i t+ ≤ ∀  (12) 

,ikt k
i

q Q k t≤ ∀  (13) 

, ,ikt ikt iq y C i k t≤ ∀  (14) 

1 ,ikt
k

y i t≤ ∀  (15) 

1 , &ijkt
i j

x k t i d≤ ∀ ∀ ≤  (16) 

, , 0 , , ,it ikt dtw q g i k d t≥ ∀  (17) 

, , , {0, 1} , , ,idt ijkt ikt kdz x y b i k d t∈ ∀  (18) 

In this model, the objective function is to minimise total cost of the system, mainly 
including two parts of transportation and inventory holding costs. Transportation cost is 
sum of routing costs from plant to distribution centres and from distribution centres to 
customers’ location along with their fixed costs. Inventory costs are caused by holding 
inventories in distribution centres and customers’ location. These terms are calculated 
throughout the planning horizon. 

Constraint 1 ensures that each customer is allocated to only one distribution centre. 
Constraint 2 indicates that each vehicle is permitted to visit customers which are 
allocated to the same distribution centre as vehicles. This constraint avoids the contact in 
different vehicles’ routes belonging to different depots. Flow conservation is guaranteed 
by constraint 3. Constraints 3, 4 and 5 impose linking conditions and also sub-tour 
elimination. Constraint 6 means that vehicles’ capacities are never exceeded. Constraint 7 
balances flow of input and output products in the distribution centres and also define the 
inventory at the supplier carried at the beginning of the following period. Constraint 8 is 
similar to 7 but is applied to the customers. Constraints 9 and 10 forbid stock outs in 
distribution centres and customers, respectively. Constraints 11 and 12 ensure that the 
amount of product in distribution centres and customers’ site should be less than the 
defined capacity limitation. Moreover, each vehicle is allowed to deliver at most the 



   

 

   

   
 

   

   

 

   

    An integrated approach for robust inventory routing problem 421    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

amount of products equal to its capacity, which is considered in constraint 13.  
Constraint 14 ensures that, if any product is delivered to a distributor, then there must be 
at least one vehicle entering that distributor with the vehicle capacity restriction 
preserved. Constraint 15 states that each customer was allowed to be visited at most once 
in a period and only by just one vehicle. Constraint 16 accounts for the fact that, in each 
period, at most one trip can be performed by each vehicle. 

As it is proved, linearisarion immensely reduces computational times. So, an 
equivalent linear formulation for constraint 7 can be obtained by replacing the term qiktbkd 
with auxiliary variable vikdt and adding the following constraints: 

( )1
ikdt kd

ikdt kd ikt

ikdt ikt

v Mb
v M b q
v q

≤
≥ − +
≤

 

Figure 1 Schematic representation of the proposed problem 

 

3 Robust optimisation 

Robust optimisation is an important methodology for dealing with data uncertainty in 
optimisation problems. First, in this method, a deterministic dataset is defined within the 
uncertain space and then the best solution which is feasible for any realisation of the data 
uncertainty in the given set is obtained, which is called the corresponding robust 
counterpart optimisation. In set-induced robust optimisation, the uncertain data are 
assumed to vary in a given uncertainty set and the aim is to choose the best solution 
among the ones ‘immunised’ against data uncertainty, i.e., candidate solutions that 
remain feasible for all realisations of the data from the uncertainty set. 

To briefly illustrate this method in general, consider the following simple linear 
mathematical model, in which parameters ija  and ib  belong to uncertain interval. 
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min

. . ij j i
j

cx

s t a x b i≤ ∀  

The corresponding robust counterpart model is as follows: 

0

min
ˆ ˆ. . max

i

ij j i i ij ij j i
ξ U

j j J

cx

s t a x ξ b ξ a x b
∈

∈

  + − + ≤  
  

   

where ija  and ib  are replaced with ib  and 0
ˆ ,i i ib ξ b+  respectively, in which ˆija  and îb  

are constant perturbation. The related newly added expressions are maximised to deal 
with the worst case. Ji represents the index subset that contains the variables, the 
corresponding coefficients of which are subject to uncertainty. ξi0 and ξij are random 
variables subject to uncertainty as well. For the uncertainty set U and for any ξ in the 
given set, the model has to be immunised against infeasibility. 

The box, polyhedral and box-polyhedral uncertainty sets are described by ∞-norm,  
1-norm and ∞ ∩ 1 norm of uncertain data, respectively; the data vectors are as follows: 

{ } { }||| || || | ,j iU ξ ξ ξ ξ j J∞ ∞= ≤ Ψ = ≤ Ψ ∀ ∈  

{ }1 1||| || | | |
i

j
j J

U ξ ξ ξ ξ
∈

 = ≤ Γ = ≤ Γ 
 
  

1 | | | , ,
i

j j i
j J

U ξ ξ ξ j J∩∞
∈

 = ≤ Γ ≤ Ψ ∀ ∈ 
 
  

In which Ψ and Γ are the adjustable parameters to control uncertainty bounds. The 
illustration of box-polyhedral uncertainty is shown in Figure 2. In fact, combined  
box-polyhedral uncertainty set is intersection of box and polyhedral sets and does not 
reduce to neither of them if the adjustable parameters satisfy the following term:  
Ψ ≤ Γ ≤ Ψ |Ji| 

Figure 2 Illustration of the combined box-polyhedral set 

0 1< Γ < 1Γ = 1 Ji< Γ < JiΓ =
 

In order to transform the deterministic model to the corresponding counterpart, it should 
satisfy some formulations. If the uncertainty set is box set, the corresponding robust 
counterpart constraint is equivalent to: 
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ˆ

,
i

ij j ij j i
j j J

j j i

a x a x b

x u j J
∈

 + Ψ ≤
 
 
 ≤ ∈ 

 
 

Similarly, for polyhedral and box-polyhedral uncertainty sets, the following expressions  
a and b should be respectively applied: 

ˆ) ) ,
ˆ , 0, 0

i

ij j ij i i
j j Jij j i i

j i ij ij j i

i ij j i i ij

a x w z b
a x p b

a b z w a x j J
p a x j J z w

∈

 + Ψ + Γ ≤
  + Γ ≤  

   + ≥ ∈   
 ≥ ∈  ≥ ≥   

 


 

To represent tractable form of the robust model, objective function and constraint 8 
should be converted into their equivalent tractable forms. First of all, the objective 
function should be transformed as a constraint by the following expressions; Li et al. 
(2011b) used this transformation in their proposed model. 

Considering that constraint 8 is an equation, extreme points of uncertainty set can be 
extended to convert the equity constraint into its tractable robust counterpart. 

Min Z  

d dt i it o dt k ijkt
t d i t k d i d j

ij ijkt dt d
i j k t t d

Z h I h I F u F x

c x u o

≤

   ≥ + + +      

+ +

     

 
 

, 1 ,ikt it it i t
k

q I d I i t++ = + ∀  

Finally, according to the above descriptions, robust counterparts of the proposed IRP in 
three-echelon distribution network with regard to three different uncertainty sets (box, 
polyhedral and combined box-polyhedral) are equivalent to the following MILP 
problems: 

• Box uncertainty set: 

Min Z  

s.t. constraints 1 7 and 9 18− −  

1 ij d

d dt i it o dt k ijkt
t d i t k d i d j

ij ijkt dt d c ijkt o dt
i j k t t d i j k t t d

Z h I h I F u F x

c x u o G x G u

≤

   ≥ + + +      
 + + + Ψ +
 
 

     

   
 

2 , 1 ,itikt it it d i t
k

q I d G I i t++ = + Ψ + ∀  
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• Polyhedral uncertainty set: 

Min Z  

s.t. constraints 1 7 and 9 18− −  

( )0 1

0

0

ˆ , , ,
ˆ ,

d dt i it o dt k ijkt
t d i t k d i d j

ij ijkt dt d
i j k t t d

ij ijkt

d dt

Z h I h I F u F x

c x u o V

V c x i j k t
V o u d t

≤

   ≥ + + +      

+ + + Γ

≥ ∀
≥ ∀

     

   

2 , 1 ,itikt it it d i t
k

q I d G I i t++ = + Γ + ∀  

• Box-polyhedral uncertainty set: 

Min Z  

s.t. constraints 1 7 and 9 18− −  

0 1

0

0

0

, , ,
,

0 ,
0
0

ij

d

d dt i it o dt k ijkt
t d i t k d i d j

ij ijkt dt d ij d
i j k t t d ij d

ij c ijkt

d o dt

ij

d

Z h I h I F u F x

c x u o w w V

V w G x i j k t
V w G u d t
w i j
w d
V

≤

   ≥ + + +      
 + + + Ψ + + Γ
 
 

+ ≥ ∀
+ ≥ ∀
≥ ∀
≥ ∀
≥

     

   

 

2 , 1 ,itikt it it d i t
k

q I d G I i t++ = + Γ + ∀  

4 Computational results 

In this section, some numerical experiments are conducted to assess different viewpoints 
of robust optimisation performance versus the deterministic version. The input data were 
randomly generated based on those generated in the research by Li et al. (2011b); 
locations of distribution centres and customers were randomly generated in a square with 
size 100 * 100. Coordinates of vendor were [–50, –50]. The customers’ demands were 
uniformly distributed on [0, 20]. The inventory holding cost in the distribution centres 
and customers was taken as 3 and 6, respectively, and unit transportation costs of the 
vehicles were taken to be 1. The inventory holding capacities for distribution centres, 
customers, vehicles belonging to plant and distribution centres were equal to 100, 20, 120 
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and 54, respectively. Both deterministic and robust models were solved by ILOG  
CPLEX 10.11 optimisation software and all the tests were carried out on a PC core.i7 
1.60 GHz with 4 GB RAM. 

To compare performance of the proposed model, the related data were applied to a 
distribution system with one plant, two distribution centres, ten customers and two time 
periods. Also, the uncertainty bound covered in this example was 10% of nominal data. 

Considering only demand uncertainty, then the only affected constraint was  
constraint 8, in which the uncertain parameter was RHS of the constraint. Therefore, the 
number of uncertain parameters was 1 and different uncertainty sets were reduced to  
1-dimenstional interval set. Figure 3 shows the results for robust counterparts for 
different uncertainty levels. As it is shown, the results were identical for the three studied 
uncertainty sets. 

Figure 3 Results for demand uncertainty in different sets and level of uncertainty 

 

Here, only transportation cost uncertainty was considered in objective function, where  
cij and od are uncertain parameters. Thus, the objective function had 83 uncertain 
parameters. From the results shown in Figures 4 and 5, it can be seen that, although for  
Γ ≤ 1, the polyhedral and interval-polyhedral uncertainty sets were equal, for Γ > 1, the 
combined uncertainty set resulted in better solutions because the corresponding geometry 
was less restricted while the polyhedral’s solution was sharply deteriorated. 

Figure 4 Travelling time uncertainties for polyhedral-interval set 
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Figure 5 Travelling time uncertainties for polyhedral set 

 

Here, all uncertainties were considered simultaneously: demand and transportation cost. 

To show results in the same figure using the same axis, 1
83demand transportation costΓ = Γ  had 

to be set. As it can be observed in Figure 6, when Γ, Ψ for demand and transportation 
cost was zero, the objective functions were equal to those of the deterministic model. 
According to this analysis, it can be concluded that, to avoid too conservativeness and 
deteriorated solutions, the interval set should be combined with polyhedral set because 
the solution for polyhedral set is rapidly deteriorated. 

Figure 6 Demand and travelling time uncertainties for three uncertainty sets 

 

5 Improved ICA 

Imperialist competitive algorithm (ICA) is an evolutionary algorithm introduced by 
Atashpaz-Gargari and Lucas (2007). This algorithm uses socio-political evolution of 
humans as a source of inspiration to develop a strong optimisation method. Since basic 
ICA is only suitable for problems with continuous variables, the algorithm was improved 
in order to adapt it to discrete problems. In this case, a crossover and a mutation function 
of the genetic algorithm were applied to ICA. Below steps of the improved ICA are 
explained. 
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5.1 Solution coding (country structure) 

A feasible solution proportion to the described model is a three dimensional matrix 
represented [M]I×D×T, the dimensions of which are distribution centre (d), time (t) and 
customer (i). Members of this matrix are the number of products which are delivered 
from a distribution centre to a customer in each period of time. Term M141 = 15, for 
example, means that customer 1 is served by distribution centre 4 in period 1. Members 
of this matrix should be produced somehow intelligently, not merely randomly in order 
not to produce infeasible solutions. The pseudo-code for the generation of delivery 
amount is described in Table 1. Regarding that each customer should be dedicated to just 
one distribution centre (as shown in Figure 1), just one cell can be a positive number in 
each row. Moreover, the amount of products transported from each distribution centre 
should not exceed its capacity. Since lost sales and back orders are not allowed in the 
proposed problem, in period 1, delivery amounts should be more than demands and less 
than capacity constraints. For periods 2 to T-1, the generated numbers should be between 
zero and minimum of constraints. Finally, delivery amounts in the last period are equal to 
sum of demand in time period minus sum of delivered amounts up to period T-1. 
Table 1 Delivery amount pseudo-code 

if t = 1 
 

1

, min , ,
T

it it c k it
t

q d Q Q d
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    ∈  
    

  

for t = 2: T – 1 
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  

 end 
if t = T 
 1

1 1

T T

it it it
t t

q d q
−

= =

= −   

After generating each country, sum of the transported products from each distribution 
centre is known; so, the minimum number of vehicles can be easily calculated. To 
construct the routes, Clarke and Wright’s (1964) saving algorithm was used, which is 
most widely known in heuristic for the vehicle routing problem and is useful for the 
problems in which the number of vehicles is a decision variable. This heuristic is based 
on savings; in the first step, a feasible solution consists of n (number of customers 
allocated to a DC) direct routes between the depot and customers. Afterwards, two routes 
are combined into a single route regarding the saving sij = c0i + c0j – cij. Combinations 
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start from the top of the saving list for every two nodes. This combination is done until 
there is no further savings. 

According to the proposed strategy, initial population with size Ncountry was created. 
Subsequently, Nimp countries were selected from the best members, which meant the ones 
with the lowest costs of this group were considered the imperialists. Then, there were Ncol 
countries left as colonies. Now, the colonies were allocated to imperialists in terms of 
their power calculated as follows: 

{ }max n impA c n N= ∀ ∈  

n nC A c= −  

cn is cost of the nth imperialist and Cn is its normalised cost. Cost of each country is 
determined by fitness function. Also, the imperialists’ proportional power is computed as 
in the following term: 

1

imp

n
n N

nn

Cp
C

=

=


 

Consequently, the number of each imperialist’s primary colonies is equal to:  
NCn = round [pn ∙ Ncol], in which NCn represents an imperial’s initial number of colonies 
in the mentioned formula. So, some primary colonies were randomly selected for the nth 
imperialist and dedicated to it. 

Figure 7 Illustration of a country or feasible solution (see online version for colours) 

 

5.2 Solution improvement 

5.2.1 Crossover operator 
After specifying the imperialists and their colonies, each colony has to move toward its 
imperialist. To approve it, crossover operation of genetic algorithm was applied to all the 
colonies by selecting a colony and applying the crossover operation between it and the 
imperialist. There were two countries as the product of each crossover operation. The 
lower cost produced country was compared with the colony. If this country had less cost 
than the colony, it was substituted for the colony; otherwise, both countries were omitted. 
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To apply the crossover operator, a random number was generated in [0, 1] for each of 
the customers; if the random number was in [0, 0.5], then, the customer was allocated to 
the DC corresponding to parent 1; otherwise, it was patterned from parent 2. As 
mentioned, these numbers should be generated for each customer in each time period. 
Through this method for crossover, infeasible solutions caused by exceeding the capacity 
of DCs could be encountered; in this case, a function was used for transforming the 
infeasible solutions to feasible ones by allocating positive deviations to other DCs which 
had negative deviation from the capacity. 

5.2.2 Mutation operator 
To search more space around imperialists, mutation operator, which is another genetic 
algorithm operator, was used for each colony. To fulfil it, mutation operator was applied 
to each colony and, in the case of accessing a better result than crossover result, the 
customer was randomly allocated to another DC which had enough remaining capacity. 

5.3 Empire power 

According to Atashpaz-Gargari and Lucas (2007), power of an empire is equal to the 
imperialist’s power plus a fraction of its total colonies’ power computed as the following 
term: 

( ) ( )( )cos cos   n n nTC t imperialist mean t colonies of empire= + ⋅α  

In which TCn indicates total cost of an empire and α is a number in interval [0, 1]. In 
general, α = 0.2 is a proper measure and had better results for the proposed problem. 

5.4 Imperial competition 

In this paper, β = 3 was considered and the number of the weakest colonies of the 
weakest empire was possessed by the imperialists’ competition. The colonies were 
proportional to the empires’ power, which meant the more the power, the more the 
possibility. To calculate the probability of each empire possession, considering total cost 
of an empire was described as follows: 

{ }ax 1,n impB m TC n N= ∀ ∈     

n nNTC B TC= −  

In this formula, TCn shows the total cost of the nth empire and NTCn is equal to the 
normalised cost of that empire, by which possession probability of each empire can be 
computed using the following term: 

1

n imp
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p N
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5.5 Eliminating an empire 

An empire is eliminated when it has lost all of its colonies. After a while, all the empires, 
except the most powerful one, will be collapsed. In such a condition, the algorithm is 
stopped and the only imperialist is displayed as the optimal solution. 

Table 2 shows resulted performance of the improved ICA versus the exact method 
performed by General Algebraic Modeling System Software (GAMS) in order to 
evaluate effectiveness of the proposed algorithm. Fifteen problems with different sizes 
were experimented; the column problem info indicates characteristics of the problem in 
terms of number of plant, number of distribution centres, number of customers and 
number of planning periods. The meta-heuristic algorithm was run five times for each test 
problem. ‘Average’ and ‘minimum’ of the resulted values were presented in columns and 
also, to assess the performance of the improved algorithm the gap between the minimum 
and average value resulted from meta-heuristic’s solution and GAMS’s solution is 

defined as: % 100.ICAz GAMSzGap
GAMSz

−= ×  Figure 8 shows comparison of the resulted 

gaps for two criteria. As can be observed, for small sized problems, the solutions were 
almost the same and the gap was zero; however, with the size increase, the gap increased 
until violating the time limitation and available memory. The gap decreased to minus 
values because the exact method was not able to find a proper solution with available 
resources. 

Figure 8 Resulted gaps using exact and meta heuristic algorithms for different problem sizes  
(see online version for colours) 

 

It should be noted that the solutions were computed in two hours because, in more than 
two hours, the problems caused low memory in the used personal computer. Figure 9 
compares solution time of ICA to GAMs, indicating the necessity of hiring and meta 
heuristic algorithm and showing that average of CPU time is more improved when using 
the proposed ICA. 
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Table 2 Comparing the proposed ICA and B&B 
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Figure 9 Comparing solution time of the proposed algorithm with GAMs (see online version  
for colours) 

 

6 Parameter designing 

The ‘parameter design’, introduced by Taguchi (1987), was used to avoid producing 
functional variances under external environment influence and to achieve higher 
robustness. This method puts the controllable factors in inner orthogonal array and noise 
factors in the outer orthogonal array. 

Signal/noise ratio (S/N) is the output obtained through the experiments of measured 
values of quality characteristics. This method aims to minimise variance of quality 
characteristics resulted from S/N ratio by tuning the parameters. Additionally, quality 
characteristics of this research were to minimise total costs; so, the principle “the lower is 
better” was preferred. 

The formula for S/N ratio was derived from the loss function presenting “the lower is 
better”, as mentioned below: 

2

1S N ration: 10 log

N

i
i

j

y
n

N
=

 
 
 =  
 


 

2Loss function: ( )L y Ky=  

Meta-heuristic parameters considered as controllable factors are mentioned in Table 3, 
each of the factors might have some levels and each level is for each value. Thus,  
45 = 1,024 experiments are required for this approach to implement full factorial design. 
A factorial replicated design is used for considering statistical theories. Since 
experimenting all combinations of factors was not economical in terms of cost and time, 
implementing all the experiments was not required. 
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Table 3 Quality characteristics and the considered value for each level 

Factors/levels 1 2 3 4 
Percent of empires 0.1 0.15 0.2 0.25 
Number of colonies 80 100 120 140 
Crossover percentage 0.7 0.75 0.8 0.85 
Mutation percentage 0.1 0.15 0.2 0.25 
Mutation rate 0.05 0.1 0.15 0.2 

In the next step, control factors were assigned to the columns of the orthogonal array and 
the corresponding integers in these columns indicated actual levels of these factors. This 
proper orthogonal array was generated by Minitab software. Note that, in the foregoing 
scheme, only the main effects were investigated. The results for five replicated trials in 
each level combination were also solved and, at last, S/N ratios were calculated by the 
formula mentioned before. The resulted values of S/N ratios are plotted against control 
factor in Figure 10. 

Accordingly, the best combination of control factors in Figure 10 can be deduced; 
control factors were more effective at their levels 3, 1, 2, 3 and 3 for percent of empires, 
number of colonies, crossover percentage, mutation percentage and mutation rate, 
respectively. 

Figure 10 Resulted values of S/N ratios are plotted against control factor (see online version  
for colours) 
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7 Conclusions 

In this paper, robust optimisation models were proposed for three-level inventory routing 
distribution systems within finite time horizon based on recent extensions in robust 
optimisation theory. The introduced problem was presented in a MILP model which was 
different from others in its rich literature. The problem considered a plant, distribution 
centres and customers at the last level. And depending on periodic demands of customers, 
they could be assigned to different distribution centres which added more flexibility to 
the model. The number of vehicles was uncertain and belonged to solutions obtained 
from the model. Three different techniques of robust optimisation with different 
uncertainty levels were applied to the mathematical model. The results were compared 
with each other that helped the decision maker to select the best strategy based on degree 
of conservatism and vision of the company. Finally, due to discreteness of the proposed 
model, an ICA was improved using genetic algorithm operators. The numerical results 
showed effectiveness of the adapted algorithm for different problems, especially for large 
ones. Also, as it was expected, in three robust techniques used here, the objective 
function increases as the level of conservatism increases. 
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